Tractable Bayesian Learning of Tree Augmented Naive Bayes Models

نویسندگان

  • Jesús Cerquides
  • Ramon López de Mántaras
چکیده

Bayesian classifiers such as Naive Bayes or Tree Augmented Naive Bayes (TAN) have shown excellent performance given their simplicity and heavy underlying independence assumptions. In this paper we introduce a classifier taking as basis the TAN model and taking into account uncertainty in model selection. To do this we introduce decomposable distributions over TANs and show that they allow the expression resulting from the Bayesian model averaging of TAN models to be integrated into closed form. With this result we construct a classifier with a shorter learning time and a longer classification time than TAN. Empirical results show that the classifier is, most of the cases, more accurate than TAN and approximates better the class probabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tractable Bayesian Learning of Tree Augmented Naive Bayes Classifiers

Bayesian classifiers such as Naive Bayes or Tree Augmented Naive Bayes (TAN) have shown excellent performance given their simplicity and heavy underlying independence assumptions. In this paper we introduce a classifier taking as basis the TAN models and taking into account uncertainty in model selection. To do this we introduce decomposable distributions over TANs and show that the expression ...

متن کامل

Learning the Tree Augmented Naive Bayes Classifier from incomplete datasets

The Bayesian network formalism is becoming increasingly popular in many areas such as decision aid or diagnosis, in particular thanks to its inference capabilities, even when data are incomplete. For classification tasks, Naive Bayes and Augmented Naive Bayes classifiers have shown excellent performances. Learning a Naive Bayes classifier from incomplete datasets is not difficult as only parame...

متن کامل

Bayesian Network Classifiers. An Application to Remote Sensing Image Classification

Different probabilistic models for classification and prediction problems are anlyzed in this article studying their behaviour and capability in data classification. To show the capability of Bayesian Networks to deal with classification problems four types of Bayesian Networks are introduced, a General Bayesian Network, the Naive Bayes, a Bayesian Network Augmented Naive Bayes and the Tree Aug...

متن کامل

Bayesian Networks in the Classification of Multispectral and Hyperspectral Remote Sensing Images

In this paper we study the application of bayesian network models to classify multispectral and hyperspectral remote sensing images. Different models of bayesian networks as: Naive Bayes, Tree Augmented Naive Bayes, Forest Augmented Naive Bayes and General Bayesian Networks, are applied in the classification of hyperspectral data. In addition, several bayesian multi-net models are applied in th...

متن کامل

Title: Incremental Learning of Tree Augmented Naive Bayes Classifiers Authors:

Machine learning has focused a lot of attention at Bayesian classifiers in recent years. It has seen that even Naive Bayes classifier performs well in many cases, it may be improved by introducing some dependency relationships among variables (Augmented Naive Bayes). Naive Bayes is incremental in nature but, up to now, there are no incremental algorithms for learning Augmented classifiers. When...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003